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Abstract
A method for numerically simulating quantum systems is proposed and applied to the
two-dimensional electron fluid at T = 0. This method maps quantum systems onto classical
ones in the spirit of the classical-map hypernetted-chain theory and performs simulations on the
latter. The results of the simulations are free from the assumption of the hypernetted-chain
approximation and the neglect of the bridge diagrams. A merit of this method is the
applicability to systems with geometrical complexity and finite sizes including the cases at
finite temperatures. Monte Carlo and molecular dynamics simulations are performed
corresponding to two previous proposals for the ‘quantum’ temperature and an improvement in
the description of the diffraction effect. It is shown that one of these two proposals with the
improved diffraction effect gives significantly better agreement with quantum Monte Carlo
results reported previously for the range of 5 � rs � 40. These results may serve as the basis
for the application of this method to finite non-periodic systems like quantum dots and systems
at finite temperatures.

1. Introduction

Properties of electron systems in three or two dimensions are of
basic importance in designing various materials as electronic
devices. In spite of a long history of their investigations,
we still lack simple and, at the same time, accurate methods
applicable to these quantum systems. With the development
of mesoscopic manufacturing especially in two dimensions,
there seems to exist an enhanced requirement for a theoretical
framework to handle two-dimensional electron systems of
mesoscopic scale. We here analyze the validity of a method
which is based on a mapping to classical systems and easily
applicable to finite systems and systems at finite temperatures.

Dharma-wardana and Perrot developed the classical-map
hypernetted-chain (CHNC) theory [1] so as to reproduce

the results of first-principle quantum simulations for uniform
interacting electron fluid by mapping a quantum system to
a classical system. This mapping includes the introduction
of a ‘quantum temperature’, modification of the Coulomb
interaction, and an additional potential between electrons with
the same spins. This theory has been applied to infinite
electron fluids in two and three dimensions and a variety of
physical properties have been analyzed at zero and also at finite
temperatures with arbitrary spin polarization [1–6].

The CHNC analyses by Dharma-wardana and Perrot
have been made on uniform unbounded systems through
integral equations which are simplified due to the translational
invariance. For systems without the latter invariance or those
with complicated geometry, however, it is not straightforward
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to apply the integral equations. Typical examples may be
quantum dots or multi-layered electron systems.

We propose a method of numerical simulation based
on the mapping of the CHNC theory. This simulation
automatically takes the contribution of the bridge diagrams into
account. The latter is not included within the hypernetted-
chain equations and needs an extra element which is well
established only for uniform systems. This simulation can be
easily applied to systems without translational invariance and
systems at finite temperatures.

In order to apply our method of simulation to these
systems, it is necessary to confirm the applicability to uniform
systems at T = 0 for which the results of ab initio simulations
are known. Our purpose is to confirm the applicability of our
method to systems with translational invariance and establish a
basis for applications to other cases. We compare two mapping
functions for the temperature proposed previously and give an
improvement in the treatment of the diffraction effect.

We here consider the two-dimensional electron fluids. The
system has the surface number density n and the temperature
T , and we denote the spin components by suffices or
superscripts σ = ±:

n =
∑

σ

nσ . (1)

Our system is characterized by three parameters: the rs

parameter defined by

rs = (πn)−1/2, (2)

the spin polarization ζ defined by

ζ = n+ − n−
n+ + n−

= n+ − n−
n

, (3)

and the temperature T . We use the atomic units and take
kB = 1 in most expressions.

2. Outline of classical-map hypernetted-chain theory

The CHNC theory is composed of three elements [1]:
(a) the assignment of the temperature to include the effect of
degeneracy, (b) the addition of a repulsive potential (the Pauli
potential) between electrons with the same spin component to
simulate the effect of Fermi statistics, and (c) the modification
of the Coulomb potential to include the effect of diffraction.

2.1. Quantum temperature

A quantum system at temperature T is assumed to be mapped
onto the classical fluid at the temperature Tcf given by

Tcf = (T 2
q + T 2)1/2. (4)

Here Tq is the ‘quantum temperature’ which expresses the
effect of degeneracy in terms of a contribution to the
temperature of classical fluid. Values of Tq are given as
a function of rs to reproduce the quantum pair distribution
function in the ground state obtained by quantum Monte

Figure 1. The comparison of mapping functions Tq I and Tq II,
(a) Tq/TF versus rs, and (b) Tq versus rs, for ζ = 0 in atomic units.

Carlo simulations. For three-dimensional electron fluids, Tq

is expressed as

Tq/TF = 1/(a + b r 1/2
s + c rs) (5)

with a = 1.594, b = −0.3160, c = 0.0240 and rs =
(4πn/3)−1/3, n being the electron density [1]. Here TF is
defined by

kBTF =
∑

σ=±1

nσ

n
Eσ

F (6)

and Eσ
F is the Fermi energy of spin species σ .

For two-dimensional electron fluids, the relation (Tq I)

Tq/TF = 2/[1 + 0.864 13(r 1/6
s − 1)2] (Tq I) (7)

has been proposed [2]. This is based on a comparison of
the values of the correlation energy Ec of a fully polarized
system with those obtained by Tanatar and Ceperley through
the diffusion Monte Carlo (DMC) method [7]. Bulutay and
Tanatar have proposed another expression (Tq II) for two-
dimensional systems [4]:

Tq/TF = 1 + a rs

b + c rs
(Tq II) (8)

with a = 1.470 342, b = 6.099 404, c = 0.476 465 by
fitting the correlation energy Ec of the unpolarized system to
the result of Rapisarda and Senatore [8] obtained by DMC
methods over the range 0.25 < rs < 40. As for the
bridge diagrams, Tq I is determined by the analyses of the
modified hypernetted-chain equation where their contribution
is approximately taken into account. On the other hand, Tq II
is determined within the hypernetted-chain approximation
without their contribution.

These two expressions have significantly different
dependence on rs as shown in figure 1 while giving the same
quantum temperature Tq/TF at around rs = 12.5. Though the
detailed functional form of Tq does not directly affect the result,
Tq is one of major ingredients of this method.
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2.2. Pauli potential

The Pauli potential between electrons with the same
spin species is determined so as to reproduce the exact
correlation in the ideal Fermi gas within the hypernetted-chain
approximation. In a classical fluid at the temperature Tcf, the
pair distribution function between particles of species σ and σ ′
is generally written as

gσσ ′(r) = exp[−β φσσ ′(r)+hσσ ′(r)−cσσ ′(r)+Bσσ ′(r)], (9)

where β = 1/(kBTcf), φσσ ′(r) is the pair potential, hσσ ′(r) =
gσσ ′(r) − 1 is the pair correlation function, cσσ ′(r) is the
direct correlation function, and Bσσ ′(r) is the bridge function.
Since the last function is neglected in the hypernetted-chain
approximation, the Pauli potential Pσσ ′ = δσσ ′ P is determined
from the pair correlation function in the ideal Fermi gas h0

σσ ′ =
δσσ ′h0

σσ as

β P(r) = − ln(h0
σσ (r) + 1) + h0

σσ (r) − c0
σσ (r), (10)

where the direct correlation function c0
σσ (r) is given by the

Ornstein–Zernike relation which is reduced to

h0
σσ (r) = c0

σσ (r) + nσ

∫
dr′h0

σσ (|r − r′|)c0
σσ (r ′). (11)

In the case of T = 0 considered in this paper, the correlation
function in the ideal gas in two dimensions is given by

h0
σσ (r) = −

(
2J1(kσ

F r)

kσ
F r

)2

, (12)

where kσ
F = 2(πnσ )1/2. Here J1(z) is the Bessel function of

the first order.

2.3. Diffraction effect

The pair potential is assumed to be given by

φσσ ′(r) = Pδσσ ′ + V Coul(r). (13)

Here the second term V Coul(r) is the Coulomb potential
between electrons which is modified in order to take the effect
of diffraction into account as [9]

V Coul(r) = 1

r
[1 − exp(−kthr)]. (14)

Here kth is a wavenumber of the order of the inverse of the
thermal de Broglie wavelength.

The value of kth is determined by solving the Schrödinger
equation for a pair of two-dimensional electrons interacting
via the potential 1/r and calculating the electron density at
r = 0 [2]. The solution is written as

�(r, θ) = Rkl(r)
1√
2π

eilθ , (15)

Rkl (r) = Cklρ
l e−ρ/2 F

(
l + 1

2
+ i

2k
, 2l + 1; ρ

)
, (16)

Figure 2. Values of kth describing the effect of diffraction (k0
th is the

thermal de Broglie wavenumber). Solid and broken lines are for
equations (21) and (22), respectively.

and

Ckl = √
k2l+1/2e−π/(4k)

|�(l + 1
2 − i

2k )|
�(2l + 1)

, (17)

where k is the momentum, ρ = −2ikr , l is angular momentum
and F(α, γ ; z) is confluent hypergeometric function. The
electron density at r = 0 and l = 0 is calculated as

|�(r = 0)|2 = 1

2π
|Rk0(r = 0)|2 = ke− π

2k
1

cosh( π
2k )

. (18)

Noting that the electron density of a free particle is given by

|�(r = 0)|2 = 1

2π
(
√

2π k)2(Jl=0(kr = 0))2 = k, (19)

we have the correlation function at r = 0 as

g(0) =
∫ ∞

0
k

e−π/(2k)

cosh( π
2k )

e−βεk dk

/∫ ∞

0
k e−βεk dk, (20)

where ε = k2. Regarding g(0) as given by exp[−β V (r = 0)],
we obtain the relation

− ln g(0)

βe2k0
th

= kth

k0
th

, (21)

where k0
th = (2π m∗ Tcf)

1/2 is the inverse of the thermal de
Broglie wavelength with the reduced mass of the scattering
electron pair m∗ = 1/2. This ratio is plotted in figure 2. Perrot
and Dharma-wardana have proposed the expression

kth = k0
th × 1.158(Tcf)

0.103 (22)

for a two-dimensional system [2]. We observe that the
proposed expression equation (22) for kth/k0

th might be too
simple and we may expect an improvement of the CHNC
results by directly using equation (21). We show that this is
the case in section 4.
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2.4. Helmholtz free energy

The total Helmholtz free energy of the system is divided into
the ideal gas part Fid and the exchange–correlation part Fxc as

F = Fid + Fxc. (23)

At T = 0 the ideal gas part is given by

Fid =
∑

σ

Fσ
id = n

∑

σ=±1

1

4r 2
s

(1 + σζ )2. (24)

The expectation value of the interaction part of the
Hamiltonian, εint, is given by the pair correlation functions as

εint = n

2

∫
dr

e2

r
[ḡ(r) − 1], (25)

where
ḡ(r) =

∑

σ,τ

nσ

n

nτ

n
gστ (r). (26)

The exchange–correlation part is obtained by an integration
with respect to the scaled Coulomb coupling as

Fxc(rs, ζ ) = n
∫ 1

0

dλ

λ
εint(λe2, ζ ). (27)

Here εint(λe2, ζ ) is the expectation value of the interaction
part of the Hamiltonian for the Coulomb coupling λe2. At
T = 0 the correlation energy per electron Ec is calculated from
Ec = Fxc − Ex, where Ex is the exchange part,

Ex(rs, ζ ) = − 23/2

3π rs
[(1 + ζ )3/2 + (1 − ζ )3/2]. (28)

3. Numerical simulation

The true Hamiltonian of our system with N electrons is given
by

Ĥ = −
N∑

i

∇2
i

2m
+

N∑

i> j

1

ri j
, (29)

where ri is the position of the particle i and ri j = ri −r j . After
mapping, we perform numerical simulations of the classical
system described by the Hamiltonian

H =
N∑

i

p2
i

2m
+

N∑

i> j

1 − exp(−kthri j)

ri j
+

N∑

i> j

δσi σ j P(ri j ), (30)

where σi is the spin of the particle i . The first term is the
kinetic energy, the second term is the Coulomb interactions
with the effect of diffraction, and the last term describes the
Pauli potential between electrons with parallel spins.

In the case of two dimensions, it is shown that the
asymptotic value of the Pauli potential for r → ∞ is given
by [2]

β P(kσ
F r) ∼ π

kσ
F r

. (31)

Table 1. The size dependence of the Coulomb energy εint per
electron in atomic units for systems of N = 256 and 512. As Tq, the
function Tq II is used.

N = 256 N = 512

rs = 40, ζ = 0 −0.025 739 −0.025 739
rs = 40, ζ = 1 −0.025 502 −0.025 509
rs = 20, ζ = 0 −0.049 929 −0.049 941
rs = 20, ζ = 1 −0.049 741 −0.049 735

In our simulations, we apply an interpolation formula for the
Pauli potential:

β P(kσ
F r) = π

kσ
F r

[1 − exp{−1.95(kσ
F r)0.85} cos(1.5kσ

F r)].
(32)

This satisfies the asymptotic behavior equation (31) and
reproduces the values of Pauli potentials with a relative error
less than 1% except for the region around kσ

F r = 2, 1.5 <

kσ
F r < 2.5, where the error is about 5%. We have confirmed

that these errors do not influence our results given in section 4
by changing the fitting parameters. It has also been confirmed
that the correlation function of the ideal gas, equation (12),
is reproduced by numerical simulation using this interpolated
Pauli potential with sufficient accuracy.

Monte Carlo and molecular dynamics simulations have
been performed imposing the periodic boundary conditions.
The Ewald method has been used to evaluate the forces
caused by the Coulomb and the asymptotic part of the Pauli
potential. For each combination of the parameters rs and ζ ,
the system is relaxed to thermal equilibrium by the molecular
dynamics and then the Monte Carlo method based on the
Metropolis algorithm is applied. The numerical data have
been obtained from the last part (more than 106 steps) of the
long enough Monte Carlo steps which allow exact control
of the temperature. Examples of the size dependence in the
calculation of Coulomb energy per electron in the system are
shown in table 1. On the basis of these results, we have adopted
N = 256.

The values of εint are thus determined by simulations and
integrated with respect to rs from rs = 0.5 to the target value of
rs in order to obtain Fxc(rs, ζ ) and the Helmholtz free energy.
The relative error of the resultant free energy is less than 0.1%
for all regions of rs values. These errors are sufficiently small
for deriving the results shown in section 4.

4. Results and discussion

We first compare the results for the correlation energy obtained
by our method of simulations adopting Tq I and Tq II with the
DMC results [7, 8], in figure 3. Here equation (22) is used
for the diffraction effect. We find that Tq II gives much better
agreement with DMC values especially in the domain rs �
10. Since our simulation automatically takes the contribution
of the bridge function into account and Tq I and Tq II are
determined respectively with and without the contribution of
the bridge function [2, 4], this result seems somewhat puzzling.
Considering, however, that the accuracy in the reproduction of
DMC results by Tq II is not easy to extract from published

4
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Figure 3. Correlation energy Ec in atomic units obtained by
classical-map simulations in comparison with DMC results [7, 8].
The quantum temperature is given either Tq I (a) or Tq II (b). The
effect of diffraction is described by equation (22) in both cases.

data and our purpose is to obtain a better expression for the
quantum temperature, we do not make further investigations of
the reason here.

As for the effect of diffraction, the pair distribution
function for an unpolarized system at rs = 20 with Tq II
and the effect of diffraction expressed by equation (22) and
equation (21) are compared with the DMC results in figure 4.
We find that the first peaks and the first valley of the pair
distribution function are lower and shallower, respectively, than
those for DMC results. The results of CHNC analyses using
integral equations, figure 2 of [2] and figure 3 of [4], also give
similar results and the results of our simulations are consistent
with those of integral equation analyses. When the effect of
diffraction is taken into account by equation (21), however,
about half of the deviation from the DMC results at the first
peak is recovered. Though the improvement in the depth at the
first valley is still small, it is clear that equation (21) gives a
better description of the effect of diffraction.

Figure 5. Correlation energy Ec in atomic units obtained by
classical-map simulations using Tq II with equations (22) and (21)
compared with DMC results [7, 8] for (a) ζ = 0 and (b) ζ = 1.

We summarize the values of the correlation energy for
ζ = 0 and ζ = 1 in tables 2 and 3, respectively. They
include the values obtained with (Tq II and equation (22)),
(Tq II and equation (21)), and reported DMC values. They are
plotted in figure 5 and we observe a significant improvement
in reproduction of the DMC results especially in the case of
ζ = 0. When ζ = 0, the effect of diffraction plays a more
important role near r = 0 as compared with the case for
ζ = 1, where the repulsive Pauli potential working for all pairs
reduces the effect of diffraction.

Values of the Helmholtz free energy in atomic units
obtained by our simulations for ζ = 0 and ζ = 1
are summarized in tables 4 and 5, respectively, giving the
values obtained with (Tq I and equation (22)), (Tq II and
equation (22)), (Tq II and equation (21)), and reported DMC
values. We confirm that values obtained with (Tq II and
equation (21)) give significantly better agreement with DMC
values.

In order to discuss the ground state polarization, we
plot the excess Helmholtz free energy of the ζ = 1
state over the ζ = 0 state obtained with the combination

Figure 4. Pair distribution functions obtained by classical-map simulations for rs = 20 and ζ = 0. The quantum temperature Tq II is adopted
and the diffraction effect is described either (a) by equation (22) or (b) by equation (21). In (c), total electron distributions obtained with
equation (21) (solid line) and with equation (22) (broken line) are compared with DMC results [7].
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Table 2. Correlation energy Ec (ζ = 0) in atomic units versus rs. Results obtained with Tq I + equation (22), Tq II + equation (22) and
Tq II + equation (21) are compared with DMC values.

rs Ec (Tq I + (22)) Ec (Tq II + (22)) Ec (Tq II + (21)) Ec (Reference [7]) Ec (Reference [8])

1 −0.059 92 −0.107 09 −0.118 93 −0.108 5
2 −0.053 15 −0.081 20 −0.089 45
5 −0.037 75 −0.046 91 −0.051 33 −0.047 75 −0.048 91

10 −0.025 67 −0.028 70 −0.030 89 −0.030 43 −0.030 09
20 −0.016 01 −0.016 74 −0.017 66 −0.017 58 −0.017 44
30 −0.011 74 −0.011 98 −0.012 52 −0.012 51 −0.012 43
40 −0.009 30 −0.009 39 −0.009 74 −0.009 70

Table 3. The same as table 2 but for the case of ζ = 1.

rs Ec (Tq I + (22)) Ec (Tq II + (22)) Ec (Tq II + (21)) Ec (Reference [7]) Ec (Reference [8])

1 −0.014 45 −0.034 09 −0.036 23
2 −0.011 98 −0.025 45 −0.026 56
5 −0.009 41 −0.014 78 −0.015 60 −0.013 16 −0.013 56

10 −0.007 11 −0.009 27 −0.009 80 −0.009 15 −0.009 59
20 −0.005 17 −0.005 68 −0.005 96 −0.006 15 −0.006 26
30 −0.004 13 −0.004 23 −0.004 41 −0.004 71 −0.004 73
40 −0.003 46 −0.003 42 −0.003 55 −0.003 83 −0.003 83

Table 4. Helmholtz free energy (ζ = 0) in atomic units versus rs. Results obtained with Tq I + equation (22), Tq II + equation (22) and
Tq II + equation (21) are compared with DMC values.

rs F (Tq I + (22)) F (Tq II + (22)) F (Tq II + (21)) F (Reference [7]) F (Reference [8]) F (Reference [10])

1 −0.160 15 −0.207 32 −0.219 16
2 −0.228 27 −0.256 32 −0.264 56
5 −0.137 80 −0.146 96 −0.151 37 −0.149 8 −0.149 0 −0.149 52

10 −0.080 695 −0.083 718 −0.085 917 −0.085 45 −0.085 12 −0.085 43
15 −0.057 452 −0.058 844 −0.060 184
20 −0.044 770 −0.045 502 −0.046 425 −0.046 34 −0.046 20 −0.046 28
30 −0.031 189 −0.031 434 −0.031 968 −0.031 96 −0.031 87 −0.031 94
40 −0.023 993 −0.024 082 −0.024 437 −0.024 39

Table 5. The same as table 4 but for the case of ζ = 1.

rs F (Tq I + (22)) F (Tq II + (22)) F (Tq II + (21)) F (Reference [7]) F (Reference [8]) F (Reference [10])

1 0.136 67 0.117 03 0.114 89
2 −0.186 42 −0.199 89 −0.201 00
5 −0.139 18 −0.144 55 −0.145 37 −0.142 9 −0.143 3 −0.143 61

10 −0.081 994 −0.084 155 −0.084 690 −0.084 04 −0.084 48 −0.084 58
15 −0.058 074 −0.059 117 −0.059 493
20 −0.045 117 −0.045 621 −0.045 902 −0.046 12 −0.046 20 −0.046 25
30 −0.031 318 −0.031 417 −0.031 595 −0.031 90 −0.031 92 −0.031 94
40 −0.024 052 −0.024 016 −0.024 145 −0.024 42 −0.024 42

(Tq II and equation (21)) in figure 6. We observe that the
ground state is always unpolarized in the domain rs < 40.
The difference in free energy, however, is very small for
20 < rs and we are unable to make any clear statement
on the polarization in this domain. These results are
consistent with the previous works using DMC methods
for two-dimensional electron fluid [4, 7, 10] which are not
conclusive on the polarization at large rs before Wigner
lattice formation. Though CHNC analysis using integral
equations predicts increase of the polarized domain at low
temperatures with increase of the temperature [3], the result
for T = 0 does not seem to be more conclusive than quantum
simulations.

5. Conclusion

In this paper, we have proposed a method for simulating
quantum systems on the basis of the CHNC mapping. We have
given important information on the selection of the quantum
temperature with an improved treatment of the effect of the
diffraction which leads to significantly improved reproduction
of the known results of quantum simulations.

Since our classical simulation is a method designed
to reproduce the results of quantum simulations, it cannot
answer any questions which are not settled by quantum
simulations. Our method of simulation, however, is much
easier to perform than first-principle quantum simulations and

6
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Figure 6. Difference of the Helmholtz free energies F(rs, ζ = 1)
and F(rs, ζ = 0) in atomic units obtained via classical-map
simulations using Tq II and equation (21).

we have many cases where quantum simulations are difficult
and our classical-map simulation can give clear answers. These
cases include systems that are finite but not so small sized, and
those with complex geometry. For example, we have analyzed

electrons confined in quantum dots by this method and shown
the possibility of spin polarization [11]. The results given here
may serve as a part of a basis for further application of this
classical-map simulation.
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